การย้ายข้อมูลการคาดการณ์โดยเฉลี่ย ตามที่คุณอาจคาดเดาเรากำลังมองหาวิธีการดั้งเดิมบางอย่างที่คาดการณ์ไว้ แต่หวังว่าคำแนะนำเหล่านี้จะเป็นประโยชน์อย่างยิ่งสำหรับบางประเด็นเกี่ยวกับคอมพิวเตอร์ที่เกี่ยวข้องกับการคาดการณ์ในสเปรดชีต ในหลอดเลือดดำนี้เราจะดำเนินการต่อโดยการเริ่มต้นตั้งแต่เริ่มต้นและเริ่มทำงานกับการคาดการณ์ Moving Average การย้ายการคาดการณ์เฉลี่ย ทุกคนคุ้นเคยกับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยไม่คำนึงถึงว่าพวกเขาเชื่อหรือไม่ว่า นักศึกษาทุกคนทำแบบฝึกหัดตลอดเวลา ลองนึกถึงคะแนนการทดสอบของคุณในหลักสูตรที่คุณจะมีการทดสอบสี่ครั้งระหว่างภาคการศึกษา ให้สมมติว่าคุณมี 85 คนในการทดสอบครั้งแรกของคุณ คุณคาดหวังอะไรสำหรับคะแนนการทดสอบที่สองของคุณคุณคิดอย่างไรว่าครูของคุณจะคาดการณ์คะแนนทดสอบต่อไปคุณคิดว่าเพื่อนของคุณอาจคาดเดาคะแนนการทดสอบครั้งต่อไปคุณคิดอย่างไรกับพ่อแม่ของคุณอาจคาดเดาคะแนนการทดสอบต่อไปได้ การทำร้ายทั้งหมดที่คุณอาจทำกับเพื่อนและผู้ปกครองของคุณพวกเขาและครูของคุณมีแนวโน้มที่จะคาดหวังว่าคุณจะได้รับบางสิ่งบางอย่างในพื้นที่ของ 85 ที่คุณเพิ่งได้ ดีตอนนี้ให้สมมติว่าแม้จะมีการโปรโมตด้วยตัวคุณเองกับเพื่อน ๆ ของคุณคุณสามารถประเมินตัวเองและคิดว่าคุณสามารถเรียนได้น้อยกว่าสำหรับการทดสอบที่สองและเพื่อให้คุณได้รับ 73. ตอนนี้ทุกอย่างที่เกี่ยวข้องและไม่แยแสไป คาดว่าคุณจะได้รับการทดสอบครั้งที่สามมีสองแนวทางที่น่าจะเป็นไปได้สำหรับพวกเขาในการพัฒนาประมาณการโดยไม่คำนึงว่าพวกเขาจะแบ่งปันกับคุณหรือไม่ พวกเขาอาจพูดกับตัวเองว่าผู้ชายคนนี้มักจะเป่าควันเกี่ยวกับความฉลาดของเขา เขาจะได้รับอีก 73 ถ้าเขาโชคดี บางทีพ่อแม่จะพยายามสนับสนุนและพูด quotWell เพื่อให้ห่างไกลได้รับ 85 และ 73 ดังนั้นคุณควรคิดเกี่ยวกับการเกี่ยวกับ (85 73) 2 79 ฉันไม่รู้ว่าบางทีถ้าคุณไม่ปาร์ตี้ และเหวี่ยงพังพอนไปทั่วทุกแห่งและหากคุณเริ่มต้นการศึกษามากขึ้นคุณจะได้คะแนนที่สูงขึ้นทั้งสองค่านี้เป็นค่าเฉลี่ยการคาดการณ์โดยเฉลี่ย อันดับแรกใช้คะแนนล่าสุดของคุณเพื่อคาดการณ์ประสิทธิภาพในอนาคตของคุณเท่านั้น นี่เรียกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่โดยใช้ข้อมูลระยะเวลาหนึ่ง ข้อที่สองเป็นค่าพยากรณ์เฉลี่ยเคลื่อนที่ แต่ใช้ข้อมูลสองช่วง ให้สมมติว่าคนเหล่านี้ทั้งหมด busting ในใจที่ดีของคุณมีการจัดประเภทของ pissed คุณออกและคุณตัดสินใจที่จะทำดีในการทดสอบที่สามด้วยเหตุผลของคุณเองและจะนำคะแนนที่สูงขึ้นในหน้า quotalliesquot ของคุณ คุณใช้การทดสอบและคะแนนของคุณเป็นจริง 89 ทุกคนรวมทั้งตัวคุณเองเป็นที่ประทับใจ ดังนั้นตอนนี้คุณมีการทดสอบครั้งสุดท้ายของภาคการศึกษาขึ้นมาและตามปกติแล้วคุณรู้สึกว่าจำเป็นที่จะต้องกระตุ้นให้ทุกคนคาดเดาเกี่ยวกับวิธีที่คุณจะทำในการทดสอบครั้งล่าสุด ดีหวังว่าคุณจะเห็นรูปแบบ ตอนนี้หวังว่าคุณจะเห็นรูปแบบนี้ คุณเชื่อว่าเป็นนกหวีดที่ถูกต้องที่สุดในขณะที่เราทำงาน ตอนนี้เรากลับไปที่ บริษัท ทำความสะอาดแห่งใหม่ของเราซึ่งเริ่มต้นโดยพี่สาวที่แยกกันอยู่ของคุณชื่อ Whistle While We Work คุณมีข้อมูลการขายในอดีตที่แสดงโดยส่วนต่อไปนี้จากสเปรดชีต ก่อนอื่นเราจะนำเสนอข้อมูลสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 3 ช่วง รายการสำหรับเซลล์ C6 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C7 ถึง C11 แจ้งให้ทราบว่าค่าเฉลี่ยย้ายผ่านข้อมูลทางประวัติศาสตร์ล่าสุด แต่ใช้เวลาสามช่วงล่าสุดสำหรับการคาดการณ์แต่ละครั้ง นอกจากนี้คุณควรสังเกตด้วยว่าเราไม่จำเป็นต้องทำการคาดการณ์ในช่วงที่ผ่านมาเพื่อพัฒนาการคาดการณ์ล่าสุดของเรา นี้แน่นอนแตกต่างจากแบบจำลองการเรียบเรียงชี้แจง Ive รวมการคาดคะเนของคำพูดราคาตลาดเนื่องจากเราจะใช้คำเหล่านี้ในหน้าเว็บถัดไปเพื่อวัดความถูกต้องในการคาดการณ์ ตอนนี้ฉันต้องการนำเสนอผลที่คล้ายคลึงกันสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ 2 ช่วง รายการสำหรับเซลล์ C5 ควรเป็นตอนนี้คุณสามารถคัดลอกสูตรเซลล์นี้ลงไปที่เซลล์อื่น ๆ C6 ถึง C11 แจ้งให้ทราบว่าขณะนี้มีเพียงข้อมูลล่าสุดสองชิ้นที่ใช้ล่าสุดในการคาดการณ์เท่านั้น อีกครั้งฉันได้รวมการคาดคะเน quotpost เพื่อวัตถุประสงค์ในการอธิบายและเพื่อใช้ในภายหลังในการตรวจสอบการคาดการณ์ บางสิ่งบางอย่างอื่นที่มีความสำคัญที่จะแจ้งให้ทราบล่วงหน้า สำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ m-period เฉพาะค่าข้อมูลล่าสุดของ m ที่ใช้ในการคาดคะเนเท่านั้น ไม่มีอะไรอื่นที่จำเป็น สำหรับการคาดการณ์ค่าเฉลี่ยของรอบระยะเวลา m เมื่อทำการคาดการณ์ราคาตราสารหนี้ให้สังเกตว่าการทำนายครั้งแรกเกิดขึ้นในช่วง m 1 ทั้งสองประเด็นนี้จะมีความสำคัญมากเมื่อเราพัฒนาโค้ดของเรา การพัฒนาฟังก์ชัน Average Moving Average ตอนนี้เราจำเป็นต้องพัฒนาโค้ดสำหรับการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่สามารถใช้ความยืดหยุ่นได้มากขึ้น รหัสดังต่อไปนี้ โปรดทราบว่าปัจจัยการผลิตเป็นจำนวนงวดที่คุณต้องการใช้ในการคาดการณ์และอาร์เรย์ของค่าทางประวัติศาสตร์ คุณสามารถเก็บไว้ในสมุดงานที่คุณต้องการ Function MovingAverage (Historical, NumberOfPeriods) ในฐานะ Single Declaring และ Initializing ตัวแปร Dim Item As Variant Dim Counter เป็นจำนวนเต็ม Integer Dim Single Dim HistoricalSize As Integer ตัวแปรที่ Initializing ตัวแปร Counter 1 สะสม 0 การกำหนดขนาดของอาร์เรย์ Historical HistoricalSize Historical. Count สำหรับ Counter 1 ถึง NumberOfPeriods สะสมจำนวนที่เหมาะสมของค่าที่สังเกตก่อนหน้านี้ล่าสุด Accumulation Accumulation Historical (HistoricalSize - NumberOfPeriods Counter) MovingAverage การสะสม NumberOfPeriods รหัสจะอธิบายในคลาส คุณต้องการวางตำแหน่งฟังก์ชันในสเปรดชีตเพื่อให้ผลการคำนวณปรากฏขึ้นที่ที่ควรจะเป็นดังต่อไปนี้วิธีการคาดการณ์การเคลื่อนที่แบบเฉลี่ยที่ถ่วงน้ำหนัก: Pros and Cons Hi, LOVE your Post สงสัยไหมว่าคุณสามารถเพิ่มเติมได้หรือไม่ เราใช้ SAP ในนั้นมีตัวเลือกที่คุณสามารถเลือกได้ก่อนที่คุณจะเรียกใช้การคาดการณ์ที่เรียกว่า initialization หากคุณเลือกตัวเลือกนี้คุณจะได้รับผลการคาดการณ์ถ้าคุณเรียกใช้การคาดการณ์อีกครั้งในช่วงเวลาเดียวกันและไม่ตรวจสอบการเริ่มต้นการทำงานผลลัพธ์จะเปลี่ยนแปลงไป ฉันไม่สามารถคิดออกว่าการเริ่มต้นที่กำลังทำอยู่ ฉันหมายถึงทางคณิตศาสตร์ ผลการคาดการณ์ที่ดีที่สุดคือการบันทึกและใช้ตัวอย่างเช่น การเปลี่ยนแปลงระหว่างสองไม่ได้อยู่ในปริมาณที่คาดการณ์ไว้ แต่ใน MAD และ Error ความปลอดภัยของสต็อกและปริมาณ ROP ไม่แน่ใจว่าคุณใช้ SAP หรือไม่ สวัสดีขอบคุณสำหรับการอธิบายเพื่อประสิทธิภาพของมันเกินไป gd ขอบคุณอีกครั้ง Jaspreet ปล่อยให้ตอบยกเลิกการตอบเกี่ยวกับ Shmula Pete Abilla เป็นผู้ก่อตั้ง Shmula และตัวละคร Kanban Cody เขาช่วย บริษัท ต่างๆเช่น Amazon, Zappos, eBay, Backcountry และอื่น ๆ เพื่อลดต้นทุนและปรับปรุงประสบการณ์ของลูกค้า เขาทำอย่างนี้โดยใช้วิธีการที่เป็นระบบในการระบุจุดที่เจ็บปวดซึ่งส่งผลกระทบต่อลูกค้าและธุรกิจและส่งเสริมการมีส่วนร่วมอย่างกว้างขวางจาก บริษัท ร่วมของ บริษัท ในการปรับปรุงกระบวนการของตนเอง เว็บไซต์นี้เป็นชุดของประสบการณ์ที่เขาต้องการแบ่งปันกับคุณ เริ่มต้นการดาวน์โหลดฟรี What0s ความแตกต่างระหว่างค่าเฉลี่ยเคลื่อนที่และค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักค่าเฉลี่ยเคลื่อนที่ 5 ช่วงโดยอิงจากราคาข้างต้นจะคำนวณโดยใช้สูตรต่อไปนี้: ตามสมการข้างต้นราคาเฉลี่ยในช่วงเวลาที่ระบุไว้ข้างต้น อยู่ที่ 90.66 การใช้ค่าเฉลี่ยเคลื่อนที่เป็นวิธีที่มีประสิทธิภาพในการขจัดความผันผวนของราคาที่แข็งแกร่ง ข้อ จำกัด ที่สำคัญคือจุดข้อมูลจากข้อมูลที่เก่ากว่าจะไม่ได้รับการถ่วงน้ำหนักใด ๆ กว่าจุดข้อมูลใกล้จุดเริ่มต้นของชุดข้อมูล นี่คือที่ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักเข้ามาเล่น ค่าเฉลี่ยถ่วงน้ำหนักกำหนดน้ำหนักให้มากขึ้นกับจุดข้อมูลปัจจุบันมากขึ้นเนื่องจากมีความเกี่ยวข้องมากกว่าจุดข้อมูลในอดีตอันไกลโพ้น ผลรวมของการถ่วงน้ำหนักควรเพิ่มได้ถึง 1 (หรือ 100) ในกรณีของค่าเฉลี่ยเคลื่อนที่แบบง่ายๆการถ่วงน้ำหนักมีการกระจายอย่างเท่าเทียมกันซึ่งเป็นเหตุผลว่าทำไมจึงไม่แสดงในตารางด้านบน ราคาปิดของ AAPL
eBook ฟรีสำหรับ Stock, Forex และการซื้อขายตัวเลือกรัฐบาลสหรัฐฯที่ต้องการคำสงวนสิทธิ์ - Commodity Futures Trading Commission การซื้อขายตราสารทางการเงินใด ๆ รวมทั้งตัวเลือกการซื้อขายล่วงหน้าและหลักทรัพย์มีผลตอบแทนที่เป็นประโยชน์ แต่ยังมีความเสี่ยงที่อาจเกิดขึ้น คุณต้องตระหนักถึงความเสี่ยงและยินดีที่จะยอมรับพวกเขาเพื่อที่จะลงทุนในตลาดหุ้นฟิวเจอร์สและตลาดหุ้น อย่าค้าขายกับเงินที่คุณไม่สามารถจะเสียได้ เว็บไซต์การฝึกอบรมนี้ไม่ใช่การชักชวนหรือเสนอทางเลือก BuySell ฟิวเจอร์สหรือหลักทรัพย์ ไม่ได้มีการระบุว่าข้อมูลใด ๆ ที่คุณได้รับจะเป็นไปได้หรือมีแนวโน้มที่จะบรรลุผลกำไรหรือขาดทุนที่คล้ายคลึงกับข้อมูลที่ได้กล่าวไว้ในเว็บไซต์นี้ ผลการดำเนินงานที่ผ่านมาของระบบการซื้อขายหรือวิธีการใด ๆ ไม่จำเป็นต้องบ่งบอกถึงผลการดำเนินงานในอนาคต กรุณาใช้สามัญสำนึก เว็บไซต์นี้และเนื้อหาทั้งหมดมีวัตถุประสงค์เพื่อการศึกษาและการวิจัยเท่านั้น โปรดรับคำแนะนำจากที่ปรึกษาทางการเงินที่มีอำนาจก่อนที่จะลงทุนเงินในตราสารการเงินใด ๆ NFA และ CTFC ข้อจำกัดความรับผิดชอบที่จำเป็น: การซื้อขายในตลาดเงินตราต่างประเทศเป็นโอกาสที่ท้าทายท...
Comments
Post a Comment